Fast 3D Vector Text in Processing 07 Jan, 2012

Technical illustrations and 3D graphs tend to need lots of different kinds of text - some bold/italic, some large/small, and often in a range of different colors or shades of grey. Having struggled with image-based font glyphs in 3D for ages, I've kinda had enough - so set out to develop my own parametric vector text in Processing/OpenGL. This applet is a demo of some of the types of 3D text object I've been playing with as well as some experiments with annotation arrows.


Music Composition with Reason 01 Jan, 2012

I recently upgraded to Reason 6 and had a bit of time over Christmas for some remixing and further experiments. Okay, I know what you are thinking, but I do have history here as I used to have a great MIDI setup in the late 80s and early 90s when I was a student. I've had Reason 4 for a while, but never the time to properly finish anything before. They're not everyone's cup of tea, but if you are interested in a little electronic music...


Dynamically Dimensioning 3D Models 28 Dec, 2011

When interactively manipulating objects in 3D, having clear dimensions that update dynamically while dragging around allows for much greater confidence and accuracy in the process. This is especially true on a tablet where accurate alignment is well near impossible as your finger (and sometimes hand) effectively obscures the drag point. However, what started out as a quick experiment ended up sucking me into a 6 day vortex, swirling around with quaternion maths and 3D text manipulation in an attempt to get radial dimensions visible when viewed from any direction. This tiny applet is the result of those 6 days.


gluUnproject() for P3D and OPENGL Sketches 04 Dec, 2011

I have been struggling for a while in Processing with the reverse projection of 2D screen coordinates back into 3D world coordinates. It's relatively straightforward in OPENGL sketches using the JOGL view matrices and the GLU.gluUnproject() function. However, I could never get anything solid when using the P3D renderer or the PGraphics3D matrices. For some reason there was always a slight scaling issue which varied with different views. Previously I've used fudge factors to get it pretty close but, as I still prefer P3D for browser embedded work, I finally spent some time on it and made the breakthrough I needed. This is a brief description of what I learnt along the way as well as a demo applet and custom gluUnproject() function.


A Small Mac Mini Server Cluster 02 Nov, 2011

I have recently been building a small multi-node cluster of Mac Mini Servers as a development tool to explore some cloud services and parallel processing techniques. For this purpose, the Mac Mini is great as they are dead quiet, use very little power, boot with no problems without a keyboard, mouse or monitor attached and are easily set up to allow full remote management, configuration and screen sharing. For me the Server version is best as only they come with an Intel quad-core i7 CPU, giving effectively 8 processing nodes each. The CPU speed is a bit slower compared to the best non-server version (2.0MHz vs 2.7MHz), however the non-server version is only dual-core.


Analytical Space Inspection 07 Aug, 2011

When dealing with complex analytical models, visually checking that all the spaces within a building have been generated correctly is never easy. This is because there are usually so many of them and their bounding surfaces are invariably adjacent to those of other spaces. You often wish that there was a way to 'explode' the building apart so you could see all of its constituent parts. Well, this the first of my experiments to do exactly that.


Super Shapes Generator 12 Jun, 2011

Having just done the Spherical Harmonics demo, and with most of the infrastructure already in place, it would have been remiss not to do a Super Shapes demo. Super Shapes are 3D forms generated using Johan Gielis' generalisation of the superellipse formula, often termed the superformula. This was proposed in 2003 as a framework for simulating natural forms and is basically an equation with four input parameters that generate a range of natural polygons.


Spherical Harmonics Shape Generator 05 Jun, 2011

I have recently been looking at the use of spherical harmonics as a way of doing real-time diffuse lighting and shadowing effects in OpenGL. As I usually only really understand stuff when I can see it, I did a quick viewer in Processing to help make sure I was getting all the algorithms correct. Some of the visualisations and shapes started to look pretty good, so I figured I’d polish it a bit and put it up on my site.


Surface Shading - Take One 31 May, 2011

The intention of this next iteration on the theme of overshadowing was to look at surface shading on a glazing panel. Unfortunately I got a bit bogged down trying to work out interactive design rules for louvres and brise soleil so didn't get as far as I'd have liked over the long weekend. However, I did finish a basic horizontal/vertical shade example and thought I'd put it up as, even though it doesn't yet show the shading effect on the glazing surface, simply being able to drag a shading mask around seems to give some useful insight into the solar aperture and obstruction effects.


Real-Time Site Analysis - For Android 16 May, 2011

The latest version of Processing makes exporting sketches directly to Android relatively easy. However, as everyone on the Processing for Android wiki keeps saying, interacting with a mobile app is very different from using a standard mouse and keyboard. My aim has always been to develop and maintain a single code base to serve all platforms, for both libraries and sketches. This update is the first of my attempts to get this happening on my Samsung Galaxy Tab, which I use for testing such things.


Real-Time Site Analysis 03 May, 2011

I often find myself trying to explain the concept of shading masks - typically over the phone which is never easy. Thus I thought I'd try both demonstrating and illustrating the basic ideas in an interactive web app. In the end it turned out far better than I ever thought it would as I managed to get the required ray-tracing working in pretty much real-time. The aim is that, as you interactively manipulate the 3D model or drag the position of the dome around, you can see instantly the resulting overshadowing effects at the dome centre, thus better understanding their relationship.


3D on the Web - Back to Processing... 30 Apr, 2011

Finally got some time to play with Processing again. It's been a hugely busy year with work and I have literally had no time to do any of my own stuff - you can see it's more than a year since my last post on this site. But, like many people in the UK, I took vacation time either side of Easter to take advantage of the Royal Wedding and May Day bank holidays. This gave me a bit of breathing space to look at WebGL and basic app development on iPad and Android, something I'd been looking forward to for a while. However, I always keep coming back to Processing.


Real-Time Dynamic Daylighting 11 Apr, 2010

Understanding the potential distribution of daylight in a room is a really key design skill. This applet lets you interactively manipulate windows in a room and see the daylight distribution recalculate and update in real-time. This really highlights the cause-and-effect relationships involved and helps develop that understanding. In addition to just showing daylighting, you can also overlay daylight factor protractors or frequency distribution data and see the effects of different surface reflectances on internally reflected light.


Simple Parametric Modelling Experiment 28 Feb, 2010

This applet is an experiment with parametric modelling. The primary focus was the development of an interactive parameter class with a securely bounded range, variable precision, detailed string formatting, tweening/animation support and direct bindings to both the slider and 3D model classes. The result is a simple parametric tower model. This is relatively simple geometry, but I am really quite surprised how fast Java-based graphics can actually be, and this isn't even using OpenGL.


Cosine Law and Surface Incidence 01 Feb, 2010

Surface incidence is governed by the Lambert cosine law. This states that the relative intensity of radiation or light on a surface is equal to the cosine of the angle of incidence, and that the relative area over which it is distributed is the inverse of this value. This applet provides an interactive and highly visual demonstration of this effect on both horizontal and vertical surfaces. You can interactively drag altitude and azimuth angles to see changes in both the distribution area and relative intensity of an incident energy beam. It is particularly interesting to see these effects simultaneously on both surfaces.